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Abstract 
Understanding human pose is a fundamental component of many forms of art, including sculpture, 
painting, drawing, and animation. Software that can accurately capture and represent the human pose 
is essential for creating realistic and expressive works of both traditional and digital art. However, to the 
best of our knowledge, there is currently no open-source code available for deep learning-based pose 
estimation from static 3D data. While there exist many "classical" pre-deep learning methods for this 
task, they have a significant drawback: they are not differentiable, making them difficult to incorporate 
into subsequent deep learning pipelines. We put special emphasis on integration with deep learning 
pipelines since they are the cornerstone of modern creative systems. In this work, we propose and 
implement two methods for human pose estimation based on neural networks. The first method 
leverages part segmentation to classify the body part of each point and estimates the body joints based 
on neighboring parts. The second method estimates joints directly from point clouds. Our code will be 
made available on GitHub. 
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1. Introduction 
Human pose estimation deals with estimation of the spatial locations of key joints on the human body 
from an image, video, or a 3D scan. Human pose estimation is a crucial component of any creative 
software because it enables it to understand and represent human movement and expression. By 
accurately estimating the position and orientation of the human body and its limbs, software can create 
lifelike animations, generate virtual characters that mimic human behavior, and interact with users in 
more natural and intuitive ways. Moreover, understanding human pose allows creative software to be 
used in a wide range of applications, from video games and animation to virtual reality and augmented 
reality experiences. Whether it is creating lifelike characters for a movie or designing interactive 
applications for virtual and augmented reality, accurate human pose estimation is essential for achieving 
realistic and engaging results [14]. 
The existing human pose estimation techniques can be categorized into several groups based on two 
factors. The first factor is the input type, which can be 2D, 2.5D, or 3D, depending on whether the input 
is images or videos and depth images, or point clouds and meshes, respectively. The second factor is 
the solution type, which is whether it is based on machine learning or not. 
Estimating a 3D pose from 2D data is a more complicated task compared to extracting a 3D pose from 
3D data, as the latter naturally holds more information. However, most of the existing research is 
dedicated to extracting poses from regular or depth images rather than from meshes or point clouds 
[15, 8 ,13, 6, 16]. This is so since the 2D media is the most widespread source of data. With recent 
advances in mobile technology turning any phone into a high-quality 3D scanner, the amount of 3D 
data is constantly increasing. The need for tools to process the data is increasing too. In this work, we 
focus on human pose estimation from 3D data. There exist methods for pose estimation from point 
clouds, for instance see [15] for an excellent review of what was published before 2022. 
The second factor is the solution type - is it based on machine learning or not. The reason why we look 
at the solution type is that currently pose estimation methods often need to be incorporated into deep 
learning pipelines [12]. Thus, they have to allow back propagation. "Classical" pose estimation method 
are typically not derivable and their incorporation into deep learning pipelines requires a lot of effort [9, 
3, 11]. The ability to use a model in a deep learning pipeline is critical for any modern system. We are 
aware of two machine learning based methods for pose estimation from point clouds. The first one is 
described in [5], which reconstructs a pose from a point cloud. However, its code has not been made 
publicly available yet. The second method is described in [1] and it does have an open-source 
implementation. However, this method is a multi-view, event-based approach that does not directly 
solve the straightforward problem of pose reconstruction. 
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At this work we implement and examine two different approaches for pose estimation from 3D point 
clouds and meshes. The first approach reconstructs the skeleton from meshes in two steps. Initially, 
the input mesh is divided into individual body parts through segmentation. Next, joints, which connect 
different body parts, are identified. A separate, iterative process is used to calculate the spine joints. 
This method can be adjusted to estimate the skeletons of not only humans but also animals, with very 
small effort.  
The second method reconstructs the skeleton from 3D point clouds directly using a neural network. The 
network estimates the relative joint positions and rotations similar to AMASS [7]. The network uses 
pointNet++ [10] for 3D feature extraction. 
We evaluate both methods by calculating the root mean squared error (RMSE) between the estimated 
and ground-truth pose and by visualizing the ground truth and the estimated point clouds. The project's 
code will be made available at our GitHub page providing pose estimation models of the two different 
methods including an evaluation and comparison between them. The code is straightforward to use, 
does not have special dependencies and can be easily applied to a variety of tasks, such as pose-
controllable avatar generation and animation. 

2. Our Approach 
In this section we present two methods for 3D pose estimation from 3D data. The methods are called 
“segmentation-based” and “direct”. Both methods are based on neural networks and, thus, can be used 
in deep learning pipelines.  
The segmentation-based method finds the skeleton in two steps. First it segments the body parts and 
then it computes the location of joints from the body parts. The direct method trains a neural network to 
find the joints directly. 
We implemented the methods so that to support as input both meshes and point clouds. The 
segmentation-based method uses meshes as input, while the direct method uses point clouds. In 
general, it is possible to convert point clouds into meshes and vice versa and we may add this option 
in the future. Meanwhile, the reader may use MeshLab [2] for conversion. Note that the neural network 
working on point clouds assumes uniform distribution of points. 
Below we describe the methods in more detail. 
 
2.1. Segmentation-Based Method 
The method solves skeleton estimation problem in two steps. First, it segments the input mesh by 
allocating every point to a body part. Then it applies anatomical knowledge to the detected body parts 
to find the location of joints. 
The segmentation step uses a neural network model presented in [4]. We made several small changes 
to the model dimensions and data types to fit our data.  
The model is trained on our dataset, see Implementations for details. 
The following body parts are detected by our segmentation model: the head, torso, arms (left & right), 
forearms (left & right), hands (left & right), thighs (left & right), calves (left & right) and feet (left & right). 
The body parts are demonstrated in Figure 1. 
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The locations of joints can be found from the segmented mesh by applying some common-sense 
anatomical knowledge. We show the accuracy of the resulted locations in Results. Below we describe 
how the locations are computed. The computation details depend on the type of the joint: 

1. Connecting joints: These are the joints that connect two different body parts. i.e., neck, 
shoulders, elbows, wrists, hips, knees, and ankles. We look for points that belong to a body 
part a and has close neighbors in the neighboring body part b. The set of these points is a 
ring of points that surrounds the joint. The mean value of this ring is the joint location. These 
are the majority of joints - 2, 5, 8, 1, 4, 7, 14, 17, 19, 21, 13, 16, 18, 20, and 12 in Figure 3. 

2. End joints: These joints are connected to a single limb. I.e., head, hands, and feet. In this 
case, it is sufficient to find the mean value of the points that belong to the limb to receive a 
good approximation. These are the joints 10, 11, 22, 23, and 15 in Figure 3. 

3. Spine joints: Joints that connect the upper-body limbs with the lower-body limbs. These 
are the joints 0, 3, 6, 9 in Figure 3. The pelvis (0) is reconstructed using the mean value of 
the reconstructed hips. The neck (9) is reconstructed as the average of shoulders. To 
reconstruct the spine joints 3 and 6, we compute an approximation to the median of the 
torso. We do it in two steps. First, we calculate the vector that connects the neck to the 
pelvis. Then we compute the average of the torso points perpendicular to the vector in the 
third and two third of the distance of the vector, see Figure 2. 

The joints are demonstrated in Figure 3. 
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2.2. Direct Method 
The direct method computes the joints directly by using a neural network. The neural network is trained 
on AMASS. It is based on PointNet++ as the basic feature detection. 
The Direct method extracts quaternion representation for each joint, considering head movements in 
all directions, including yaw, pitch, and roll. However, the Segmentation method extracts the joints' 
locations as described in Segmentation Based Method, and it does not consider the yaw movement of 
the head. Consequently, the skeleton remains unchanged as the head moves about the yaw axis. 
It is worth mentioning that the Segmentation based method can be easily adjusted for other skeletons 
by adjusting the second step of the method. In contrast, this is not possible with the Direct method since 
it relies on AMASS to move from the regressed pose code to point cloud and skeleton. Therefore, 
adapting the Direct method to other skeletons is not easy because AMASS is only familiar with human 
samples. 
 

3. Results 
Figures 4 and 5 show graphs summarizing the MSE value per joint for each of the methods, along with 
the mean error value. The meshes and point clouds used are normalized to a unit sphere, so the 
average RMSE value, relative to the mesh/point cloud size, is 1.52% and 2.16% for each method 
respectively. 
For the first method, the largest average error is observed for the 'spine1' joint, which is around three 
times the average of all errors. However, in percentage terms, it is still relatively small. 
For the second method, no single joint stands out with relatively high error compared to others. 
However, there is a pattern in which the joints  closest to the pelvis obtain the smallest error. 
The average error of the first method is smaller compared to the second method. Yet, in the second 
method, the errors of the pelvis and nearby joints are smaller, which may contribute to a more visually 
pleasing result. 
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3.1. Segmentation Based Method Results 
In Figure 6 examples of estimated and ground-truth (GT) skeletons are presented, placed inside a given 
sample with GT and estimated segmentation, respectively. It is evident that the utilization of 
segmentation in the skeleton reconstruction tasks produced visually pleasing results for the most part. 
The most noticeable difference is observed at the 'spine1' joint, which is due to the spine not being 
straight and the use of only an approximation to find it. 
 
3.2. Direct Method Results 
Figure 7 show estimated and GT point clouds. The point clouds are projected and displayed in 3 
different viewpoints for better observation. The qualitative results demonstrate an eye pleasing result, 
a main concern in creative tasks. A small difference in the hand joint is observed. 
We choose to display the results of this method in such manner as it demonstrates the use of the 
estimated pose in generating a 3D human with a specific, given pose. A possible use case of the 
proposed method would be using it to enforce human pose controllability in 3D generation tasks. 
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4. Conclusions 
Human pose estimation is a basic part of any software dealing with human representation. This paper 
presents two fast and accurate methods for human pose estimation from 3D data, which can be easily 
integrated into deep learning pipelines. The authors plan to provide reliable and easy to use open-
source implementation of the methods. 
In future work, the authors suggest extending the methods to non-human skeletons and integrating 
them with popular game building tools such as Unity. 
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