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Abstract 
Robust real-time tracking of the human body is crucial to applications that benefit from live visualizations 
performed on the underlying body. Such applications could fall in the category of Augmented Reality 
for Human Bodies, finding great usage in the broader fields of Medicine and Apparel. Specifically, robust 
real time tracking of the female torso is a crucial component in the pre-visualization of cosmetic breast 
surgeries. In order to track a torso from monocular RGB input, landmarks that describe the pose and 
shape of the torso have to be detected. Existing state of the art in algorithms for human pose estimation 
are dominated by deep neural networks and rely on the availability of large databases with high quality 
annotations. However, for the requirement of pre-visualizing cosmetic breast surgeries, existing 
databases fall short  as they contain no or very few landmarks that can reliably help estimate the shape 
of the female torso. Therefore, by building on top of openly available databases of human character 
models, we create a pipeline for generating synthetic female torsos in both naked and clothed 
scenarios. We show that deep landmark detectors trained using such a synthetic dataset are capable 
of generalizing well to unconstrained real world images.  

Keywords: 3D body scanning, Augmented Reality, Pose Estimation, Cosmetic Breast Surgery, Pre-
visualization  

1. Introduction
Cosmetic surgeries are an important use case for Augmented Reality in medicine, as they require the
patient and the doctor to be on the same page with regard to their expectations for the surgery. In this
work, we address problems related to cosmetic breast surgeries, where pre-visualization will
tremendously help patients in making decisions about their surgical requirements (see Figure 1).
Specifically, we address the problem of landmark detection on a female torso, which is a critical first
step for such a pre-visualization. We create the first high quality synthetic dataset designed for cosmetic
surgeries on the female torso and combine it with the power of deep learning to create a deep, data-
driven landmark detector.
The rest of this paper is organized as follows. In section 2, we go over related methods in landmark
detection. In section 3, we describe in detail our landmark detection architecture. Our synthetic data
generation pipeline is described in section 4. The details of our implementation are provided in section
5. Qualitative and quantitative results are provided in section 6, and section 7 summarises our work.

2. Related Work
In recent years, deep learning methods have significantly advanced the state of the art in landmark
detection. For a concise summary, we differentiate these methods based on their architecture and their
approach to the problem. With regards to network architecture, existing work can be broadly classified
into three categories namely i) networks that are a combination of  convolutional and fully connected or
’dense’ layers ii) fully convolutional networks, and iii) recurrent networks. The former consist of
architectures that take an image as input and learn convolutional filters that extract low level and
semantic features, which are then flattened and passed onto one or more fully connected or ’dense’
layers. The final layer of such an architecture outputs a vector of landmark positions. On the other hand,
fully convolutional architectures predict the positions of landmarks as heatmaps that encode the
probability of a landmark being present at a particular pixel. Such architectures have a few advantages
viz. (i) fully convolutional networks are translation invariant (ii) images of different sizes can be used at
training and test times (iii) as landmarks are extracted from the heatmaps, they provide a guarantee
that the predicted landmarks always lie within the domain of the image (iv) the representation of
landmarks as a heatmap makes the prediction of such networks human interpretable, allowing a  better
understanding of why things fail. Finally, when working with a temporal sequence of images at test time,
it is often necessary that some smoothing is performed on the predicted landmarks as a post processing
step to ensure temporal consistency of landmarks. To incorporate this into the learning pipeline, neural
network architectures where predictions from a previous frame could also be fed as input to the network
have also been proposed [6].
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Figure 1:  A real time AR torso visualization for a patient which uses the landmark detector described in this work. 
 
Based on their approach towards solving landmark detection, architectures can be classified broadly 
into i) model based fitting methods ii) multi-task learning, and iii) cascaded or regional models. Model 
based methods assume an underlying low resolution 3D model that is parametrically fit to images using 
learned features. Multi-task methods following the principle of ’auxiliary learning’ jointly infer multiple 
attributes of the given image. For example, in the case of facial landmark detection, jointly determining 
additional attributes of the image such as the person’s age, gender, head pose etc have been shown 
to improve the accuracy of landmark detection [7].  
Since an exhaustive summary of all landmark detectors is beyond the scope of this work, we refer the 
readers to [1, 2, 3, 4, 5, 6, 7] for a summary of recent methods that we reviewed to develop our solution. 
 
3. Methodology 
Our cosmetic breast surgery pre-visualization pipeline involves a number of stages. It begins with the 
acquisition of images of the patient’s torso. Landmarks are detected on the acquired imagery. A 
parametric model of the torso is fit to these landmarks and additional visual cues from the image to 
match the shape and appearance of the patient. The outcome of this step is a 3D estimate of the 
patient’s torso. This patient specific 3D model has to  be rigidly transformed in space such that its 
position coincides with the patient’s location in the image. Additionally,  the surgeon or the patient have 
the option to parametrically control the patient’s 3D model. Modifications include variations to the size 
of the breasts, their position, shape etc. The modified torso is re-rendered onto the acquired imagery to 
provide a pre-visualization of the desired surgery. To be of practical use, the entire pipeline must operate 
on a mobile device in real time.  
Landmark detection is a fundamental task in this pipeline, playing an important role in not only 
estimating the shape of the torso, but also to spatially track it. In this section, we describe our method 
to detect landmarks on the female torso. Nowadays, landmark detection is almost entirely solved with 
neural networks. Therefore, we also resort to a learning approach to address the problem of detecting 
landmarks on the female torso.  
 
3.1. Network Design Principles 
Neural networks are typically large, computation hungry models that require workstations with GPUs to 
run close to real time. Since our goal is to run landmark detection on mobile devices for surgical 
visualizations, we additionally need to take the following factors into account. 
 

3.1.1. Accuracy 
The landmarks detected on the torso serve the dual purpose of torso fitting and tracking. Naturally, for 
such surgical pre-visualizations, the accuracy of the fit is of primary importance. Several recent methods 
have shown that deeper networks tend to perform better than their shallow counterparts, given a 
sufficient training corpus. This however comes at the cost of increased inference time. 
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3.1.2. Inference Time 
For the pre-visualization to be practically useful for the patient, landmarks must be detected faster than 
real time ( > 30 FPS) in order to provide a leeway for subsequent processing and visualization. The 
inference time or the time taken to predict landmarks for a single frame on average is governed by two 
main factors; the availability of a GPU, and the size of the network. Given that high-end mobile devices 
such as the Ipad-Pro are already equipped with specialized hardware for neural network applications, 
it is reasonable to assume that in the near future, the hardware will not be a limiting factor for faster 
than real time landmark detection on almost all mobile platforms. Hence the size of the network will play 
the most important role. Unfortunately, as noted before, bigger networks perform better. Therefore, the 
speed-accuracy tradeoff has to be considered when designing architectures for mobile platforms. 
 

3.1.3. Temporal Consistency 
Almost as important as accuracy, is the temporal consistency of landmarks. Poor temporal stability of 
the landmarks can result in jittery pre-visualizations which reduce the reliability of the solution. To this 
end, we use a differentiable argmax operation to predict landmark positions directly as opposed to 
predicting heatmaps (please refer to section 3.3 for more details).  
 
3.2. Stacked Hourglass with bottleneck residual blocks 
The stacked hourglass network [1] has been proven to work in a number of landmark detection 
applications. It has been successfully applied to detect landmarks on the human body, hands and faces 
[1, 2, 4]. Therefore, it was a natural first choice for our application too.  
The architecture of the hourglass is designed to leverage information from multiple scales of the input. 
The authors of the stacked hourglass observe that while local evidence is essential for identifying 
features like faces and hands, a final pose estimate requires a coherent understanding of the full body. 
The hourglass is a simple, encoder-decoder design with several skip connections that reuse information 
across corresponding scales of the encoder and decoder. The network accepts an input image of 
resolution 256 x 256 pixels and compresses it to a resolution of 4x4 pixels at the final stage of the 
encoder. Features are spatially reduced to lower resolutions using a combination of convolutional and 
max pooling layers. At each max pooling step, the network branches off and applies more convolutions 
at the original pre-pooled resolution. After reaching the lowest resolution, the network begins the top-
down sequence of upsampling and performs a combination of features across scales. To bring together 
information across two adjacent resolutions, the hourglass architecture performs a nearest neighbor 
upsampling of the lower resolution followed by an element-wise addition of the two sets of features. 
Upon reaching the output resolution of the network, two consecutive rounds of 1x1 convolutions are 
applied to produce the final network predictions. The output of the network is a set of heatmaps where 
for a given heatmap the network predicts the probability of a landmark’s presence at each and every 
pixel. Our architecture uses residual blocks for each layer of the hourglass. Similar to the original 
proposal, we use bottleneck residual blocks with filter sizes of 3x3 at every layer. This restricts the total 
number of parameters at each layer, and keeps overall memory usage in check. Once such an 
hourglass network with residual blocks has been constructed, we append another hourglass module to 
its end. This additional stack feeds the output of the first stage as an input to the next. This provides the 
network with a mechanism to redefine its features or make incremental improvements to the detected 
landmarks. This is made possible because the first hourglass stage also predicts its estimate of the 
landmark heatmaps which are supervised with ground truth.  
In our application, we are not interested in estimating the pose of the whole body, and restrict ourselves 
to estimating the shape and pose of the torso. Nonetheless, it is a natural observation that a global 
context derived from the position of the patient’s shoulders and arms will aid in localizing the rough 
position of the torso. Further, in the context of cosmetic breast surgery, the images captured by the 
surgeon are under controlled conditions where the patient is in a set of standard poses. Typical poses 
used for such captures include the frontal and profile views. We account for these priors when  rendering 
our synthetic dataset as explained in section 4.  
 
3.3. Differentiable Argmax 
Most existing convolutional networks that regress heatmaps are trained with ground truth heatmaps. 
Ground truth heatmaps are generated by applying a spatial gaussian filter to the position of the 
landmarks. The standard deviation of this gaussian filter  is manually specified and the position of all 
landmarks in the ground truth are blurred using the same. However, certain landmarks in the training 
set are localized with higher uncertainty due to the underlying feature. For example, in the case of the 
female torso, landmarks like the nipples, and areola are easier to unambiguously identify and therefore 
to annotate than those on the breast. Training networks with heatmaps created from isotropic Gaussian 
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kernels is enforcing the assumption that localization of all landmarks is equally (un)certain. During test 
time, the position of the landmarks are extracted from the predicted heatmaps using an argmax 
operation. While this is a simple way of extracting positions from the heatmaps, it is limited by its ability 
to predict only integer positions. The operation is also not differentiable, meaning that the network 
cannot directly regress landmark positions, while remaining fully convolutional.  
Unlike previous methods in landmark detection, we choose to represent the output of our convolutional 
networks as latent heatmaps without ground truth supervision. This provides the hourglass with the 
flexibility to be more confident about certain landmarks than others and to represent them using 
anisotropic non-gaussian distributions.The latent heatmap output by the global hourglass is passed 
through a channel-wise spatial softmax to ensure that each channel is a probability distribution over the 
landmark’s position in the image. Then, we perform a softargmax operation on the landmark heatmaps 
to extract landmark positions as a batch size x number of landmarks x 2 vector. Since the soft-argmax 
operation boils down to a weighted average, it is fully differentiable unlike the argmax. Extracting 
landmark positions this way enables us to train the hourglass modules using only ground truth landmark 
positions without having to create ground truth heatmaps, while at the same time ensuring that the 
landmark positions are represented inside the network as a heatmap, and therefore keeping the network 
fully convolutional. Our full architecture is shown in figure 2.  

 
Figure 2: Our two stage hourglass network where the heatmaps are supervised 

using 2D ground landmarks thanks to the softargmax operation. 
 
4. Datasets 
For a data-driven application such as ours, the availability of a well annotated dataset is of utmost 
importance. Unfortunately, to the best of our knowledge, there exists no publicly available dataset of 
female torsos in the context of landmark detection for surgical visualizations. Building such a dataset is 
primarily limited due to privacy concerns and is further burdened by the cost of annotating data. 
Therefore we resort to generating photo-realistic synthetic data and learning from such images. In the 
following section, we describe our synthetic dataset creation pipeline.  
Using an openly available parametric model for human character generation, we procedurally generated 
600 detailed digital humans. Each character was created with a random hairstyle, a random body pose 
and random clothing. To consider the wide variation in the shape of female torsos, parameters of the 
breasts were also altered to create a variety of plausible shapes. On these characters, we define the 
landmarks shown in figure 3. 

 
Figure 3. Landmarks defined on a template female torso 
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These characters were then rendered in different viewpoints and environments by path tracing. During 
rendering, skin reflectance properties like sub-surface scattering were also considered to result in 
realistic renderings of these characters. Some example renderings from our synthetic dataset are 
shown in figure 4. 

 
Figure 4: Examples of synthesized characters from our database with landmark annotations. To generalize to 

diverse capture scenarios, we generate both naked and clothed characters. Notice the variation in clothing, pose 
and shape of these characters. 

 
In total, we created a database of 22,760 samples containing 600 characters, and 64 landmarks. We 
refer to this dataset as SynHuman-Train.In addition to SynHuman-Train, we additionally created 100 
new characters, with novel shape and clothing for validation. These characters were rendered in novel 
environments and viewpoints in the same way as SynHuman-Train. Our validation dataset consisted of 
10,589 samples, spanning 100 characters, and ground truth landmarks. We refer to this dataset as 
SynHuman-Val.  
 
5. Implementation Details 
We use an L2 loss to supervise the output of the network with the ground truth landmarks. We 
implemented our solution in Pytorch and used a single Nvidia 1070 GPU to train our model. We used 
the Adam optimizer and a batch size of 8.  
 
6. Results 
In this section we show quantitative and qualitative results that emphasize the performance of our 
application. All results are reported on the SynHuman-Val dataset.  
 
6.1. Quantitative Results 
We use the Percentage Correct Keypoints (PCK) [1] metric for quantitative evaluation. In figure 5, we 
plot the PCK metric evaluated at different thresholds for the SynHuman-Val dataset. We obtain an AUC 
of 0.94 which is comparable to state of the art landmark detectors for faces and human bodies. 

 
Figure 5: PCK plot for our method on the SynHuman-Val dataset. 
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6.2. Qualitative Results 
In figure 6, we plot predicted landmarks on a few samples from the SynHuman-Val dataset. We also 
evaluated our method with real imagery captured from hospitals and found our method to generalize 
remarkably well. However, for privacy reasons, we do not display the results on the real imagery here. 

 
Figure 6: Examples of predictions on the SynHuman-Val dataset. 

 
7. Conclusion 
In this paper we presented ARSynth, a robust pipeline to track human upper bodies, based only on 
realistically generated synthetic datasets and trained utilizing adaptation of state-of-the-art deep neural 
networks. We demonstrated the capability of such networks to generalize well on unconstrained real 
world images. 
What we did not demonstrate in this paper is how the 3D upper torso fitting is performed, which 
combined with the tracker and a proper appearance modeling can be utilized for Augmented reality 
applications. We leave this for future work.  
A direct application to this method is the live pre-visualization of breast surgical operations in an 
Augmented Reality setting. The method however is general and can be easily applied to other body 
parts. More importantly, these methods span other fields such as ‘Body Technology for Apparel’, where 
a virtual cloth fitting from home use application can be envisaged. 
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