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Ptosis is an important morphological parameter for characterizing breast aesthetics and is frequently 
assessed before breast surgery. It refers to the extent to which the nipple is lower than the 
inframammary fold (the contour along which the inferior part of the breast attaches to the chest wall). 
Current clinical assessment of ptosis involves qualitative visualization by observers, which is subject to 
inter- and intra-observer variability. Alternatively, ptosis can be measured anthropometrically directly by 
manual measurements from the patient or indirectly from manual or computerized measurements on 
clinical photographs. Although functional, these methods are subject to operator bias and can be 
practically limiting. As stereophotography is now finding its niche in clinical breast surgery, in this study 
we investigated and evaluated the utility of three-dimensional (3D) features such as surface curvature, 
coronal projection and surface normal for the assessment of breast ptosis using 3D scans of the torso. 
Experimental results suggest that 3D features are successful for objectively categorizing breast ptosis 
with high accuracy and precision. 
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1. Introduction 
Ptosis is a measurement clinically used for characterizing breast morphology that estimates the amount 
of sagging or drooping of the breast. It refers to the extent by which the nipple is lower than the 
inframammary fold (IMF), i.e., the lower breast contour along which the inferior part of the breast 
attaches to the chest wall. Currently, measures characterizing ptosis are determined by (1) qualitative 
subjective assessment by human observers, (2) direct physical measurements (anthropometry), (3) 
computer aided measurements on clinical photographs (photogrammetry), and (4) computer aided 
measurements using three-dimensional (3D) images (stereophotogrammetry).  
 
Subjective assessment of breast aesthetics is highly influenced by the observers’ experience and may 
be biased based on his/her visual perception of breast aesthetics. This assessment is typically based 
on vaguely defined rating scales that are inherently subjective and qualitative. Substantial studies have 
reported low intra- and inter- observer agreement and reliability, primarily due to the lack of consistency 
in the manual perception and interpretation of aesthetic outcomes [1-3]. 
 
Anthropometry is a measurement performed directly on the patient’s body using a measuring tape. 
Occasionally, measurement of fundamental parameters such as distances along the contoured surface 
of the breast can be imprecise due to the inherent mobility of the subcutaneous glandular tissues. 
Despite being a useful approach for quantifying breast aesthetics in clinical practice, there are several 
pragmatic limitations that make it impractical when evaluating a large group of patients in clinical 
studies.  
 
Photogrammetry is an alternative allowing indirect anthropometry on two-dimensional (2D) clinical 
photographs. In photogrammetry, digital images are typically displayed on a computer monitor, or 
conventional photographs are shown to observers for manually marking measurements. 
Photogrammetry is relatively more feasible and easy to implement since most medical institutions 
routinely take photographs for documentation purposes. However, photogrammetry has its draw- backs 
too. It cannot capture the 3D nature of the human torso. To get a complete view of the torso, a set of 
multiple photographs with the patient positioned at different angles have to be taken. Furthermore, 
accurate anatomic landmarks that are critical to obtaining reproducible assessment of aesthetic 
outcomes by photogrammetry may not be visible from 2D photographs. Some studies have also 

http://dx.doi.org/10.15221/13.098

Proc. of the 4th International Conference on 3D Body Scanning Technologies, Long Beach CA, USA, 19-20 November 2013

98



reported substantial observers’ deviation for assessment from photographs, due to the lack of 
consistent guidelines for standard photography [4, 5]. 
 
Stereophotogrammetry, which involves measurements on 3D scans of torso, is being evaluated as an 
alternative method to assess breast aesthetics. 3D digital photography systems are capable of non-
invasively generating precise images at high speeds. A single 3D image yields more information on 
breast appearance than multiple conventional 2D photographs. One 3D scan of the torso can be viewed 
from several different angles, which is impossible in 2D photogrammetry. They also enable objective 
determination of properties such as contour distance, surface area, volume, and surface curvature, 
which are not available from 2D images [6–8]. Thus, 3D imaging has tremendous potential for analysis 
of breast appearance. 
 
Previous studies on breast ptosis measurements were all based either on subjective ratings, direct 
anthropometry or 2D photogrammetry, thereby affecting the analysis that can be performed. Ptosis 
ratings involve identification of fiducial points (such as the nipple and the inframammary fold) on 
patients. However, the inframammary fold is often difficult to identify when done by photogrammetry and 
stereophotography because it is vaguely defined and hard to distinguish [12]. Currently, 3D 
stereophotogrammetry is finding its niche in surgical planning, patient education and evaluation of 
surgical outcomes. 3D features can be potentially explored for quantitative assessment of ptosis, which 
has not been done in previous studies. In this paper, we present an approach of measuring ptosis that 
excludes the identification of the inframammary fold using 3D scans of torso, and would provide robust 
performance and accurate results. 
 
2. Related Work
2.1 Qualitative Classifications of Breast Ptosis 
Plastic surgeons use a classification system to categorize the degree of breast sagging, or ptosis. This 
classification system also helps surgeons determine what treatment option is the best for an individual 
based on the level of her breast ptosis. Ptosis is clinically defined using Regnault’s (1976) [9] 
classification scheme (Figure 1), wherein Grade 0 (Normal breast) is defined as a normal breast that 
has the nipple and parenchyma (glandular tissue and fat which compose the breast) sitting above the 
IMF. In Grade 1 (Minor ptosis), the nipple lies at the level of the IMF and above the lowest contour of 
the breast. In Grade 2 (Moderate ptosis), the breast exhibits sagging in which the nipple lies below the 
level of the IMF but remains above the lowest contour of the breast, and in Grade 3 (Major ptosis), the 
breast exhibits severe sagging in which the nipple lies well below the IMF and lies at the inferior contour 
of the breast. 

 
Figure 1: Regnault’s classification of ptosis. 

Additionally, a variety of other classification schemes exist for determining the degree of ptosis, 
including those described by Lewis (1983) [13], Brink (1990) [14] and (1993) [15], LaTrenta and 
Hoffman (1994) [10], Kirwan (2002) [16], and de la Torre and Vasconez (2007) [17]. Classification of 
ptosis can be used to help determine the type of surgery, such as for the determination of whether to 
augment the breast, perform a mastopexy or do a breast reduction. Ptosis assessments are also used 
by physicians when discussing with the patient the pros and cons of different surgical procedures [18]. 
 
2.2 Quantitative Classification of Breast Ptosis 
In 1994, LaTrenta and Hoffman [10] added a quantitative measurement for the Regnault’s classification 
of ptosis based on the vertical distance of the nipple to the IMF. They quantified the classification using 
distance in centimeter metrics as follows. 
 
First degree or minor ptosis: nipple position lies within 1 cm of the level of the IMF. 
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Second degree or moderate ptosis: nipple position lies 1-3 cm below the IMF. 
Third degree or severe ptosis: nipple position lies greater than 3 cm below the level of the IMF and 
below the lower contour of the breast and skin envelope. 
Pseudoptosis: nipple position lies at or above the level of the IMF with a loose “saggy” skin envelope, 
giving the impression of true ptosis. 
 
In addition, Kirwan [16] proposed a new quantitative measurement for ptosis wherein 6 stages of breast 
ptosis covering a 5 cm distance are defined. Stages A to F progress in 1 cm increments as follows: (A) 
nipple position 2 cm above the IMF, (B) nipple position 1 cm above the IMF, (C) nipple position even 
with IMF, (D) nipple position 1 cm below the IMF, (E) nipple position 2 cm below the IMF, and (F) nipple 
position greater than 2 cm below the IMF. 
 
2.3. Objective Measurements of Ptosis using 2D Photogrammetry 
Kim et al. [11] proposed an objective, quantitative measurement of breast ptosis based on the ratio of 
distances between fiducial points, such as nipple, sternal notch, lateral terminus, and lowest visible 
point, manually identified in digitized/digital images of oblique and lateral preoperative photographs. 
However, the automatic identification of fiducial points can be challenging to locate and manual 
interventions must be involved. Furthermore, outcomes of distance ratios, which scale from 0 to 1 need 
to be accurately mapped on to the 4-point scale by Regnault to allow interpretation of the outcome in 
terms of the ptosis grade. The paper employed a simple linear regression approach to transform the 
distance ratios to subjective scales, based on two clinical groups of 52 patients and 10 patients, 
respectively. However, the distribution of the measurements in either group did not illustrate strong 
linear relationships with the Regnault’s 4-point scale (R2 values of 0.4808 and 0.5793). 
 
3. Data Acquisition 
3.1 Imaging System 
The 3D images used in this study were captured using two stereophotogrammetric systems, namely, 
the DSP800 and 3dMDTorso systems manufactured by 3Q Technologies Inc., Atlanta, GA. The latest 
version, the 3dMDTorso, has improved accuracy enabling capture of 3D data clouds of 75,000 points, 
whereas the older system, the DSP800, allows capture of data clouds consisting of 15,000 points. Each 
reconstructed surface image consists of a 3D point cloud, i.e., x, y, z coordinates, and the 
corresponding 2D color map. Only the frontal portion of the torso is imaged resulting in a surface mesh, 
which excludes the back region. 
 
3.2. Study Sample 
Women scheduled to undergo mastectomy and breast reconstruction were recruited at The University 
of Texas MD Anderson Cancer Center under a protocol approved by the institutional review board. For 
this study, a data set consisting of torso images of 41 women who had either one or both nipple(s) 
visible were selected. In addition, images from 5 commissioned participants were included in the data 
set. The 41 patients ranged in age from 34 to 66 years (48.5 ± 9.4) with body mass index (BMI) in the 
range of 20.3 to 41 ����� (30.2 ± 6.2). Of the 41 patients, five were Hispanic/Latino and thirty-four 
were not Hispanic/Latino. Thirty-four patients were white and five were African American. Race, 
ethnicity, age, and BMI information was not available for two patients and the five commissioned female 
participants. From the total of 46 torso images, 64 cropped images (see section 4.1 below) consisting of 
the right or left breast were used for the computation of ptosis for each individual breast. 
 
4. Methodology 
4.1. Image Cropping 
As a first step, the torso image was cropped to remove the neck, arms, legs and abdomen, leaving only 
the upper portion of the torso encompassing the breast as the region of interest (ROI). As shown in 
Figure 2, the ROI was defined from the vertical level of sternal notch down to the lowest visible point of 
the breast. Horizontally, each breast was cropped individually from the medial axis to the lateral point. 
The reason for cropping the torso image into individual breast regions is that the ptosis grade was 
determined individually for each breast, since a patient may either have asymmetric breasts, i.e., the 
two breasts may have different ptosis grades, or only one breast is intact due to whole or partial 
mastectomy. 
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Furthermore, each breast was divided into four quadrants with the nipple at the origin to capture any 
spatial morphological differences across the four ptosis grades. The four quadrants were named as a, 
b, c, and d clockwise as follows: the upper inner quadrant a, the upper outer quadrant b, the lower outer 
quadrant c, and the lower inner quadrant d (see Figure 2d). As the ptosis grade increases, the nipple 
moves downward, and the shape of the breast within each quadrant as well as the distribution of points 
in each quadrant changes across the four grades. 

    
(a) (b) (c) (d) 

Figure 2. Image of torso (from the sternal notch to just below the IMF) with the neck and arms cropped. 
(a) Cropped image with both breasts (b) Cropped image of the right breast (c) Cropped image of the 

left breast (d) Each breast ROI was divided into 4 quadrants. 

4.2 Curvature Analysis 
Surface curvature analysis can be used to highlight the shape of the underlying 3D surface, thus it plays 
an important role in ptosis classification. To calculate Gaussian curvature, we used a toolbox developed 
by Gabriel Peyre [19] based on the algorithms proposed by Cohen-Steiner et al. [20,21]. We employed 
a pseudo-color visualization method for viewing the Gaussian curvature of the 3D mesh. Figure 3 
shows the color-mapped Gaussian curvature for the 3D image in Figure 2. The color red represents 
elliptic regions, blue represents hyperbolic regions, and green represents regions that are nearly planar 
or cylindrical. 
 
An ideal breast without ptosis is relatively symmetrical across the superior half and inferior half, 
whereas sagging of the breast gland with increasing ptosis results in a non-symmetric breast shape and 
consequent asymmetry in curvature is observed across the upper and lower poles of the breast. When 
the ptosis grade increases, the underlying gland droops, leading to a larger area that is flatter (low 
curvature values) being observed within the regions of quadrants a and b. This indicates an increase in 
the number of points around curvature value equal to zero within these quadrants. 
 

   
(a) Grade0 (b) Grade 1 (c) Grade 2 (d) Grade 3 

Figure 3: Representative Gaussian curvature plots of breasts from the 4 ptosis grades. 

 
For inferior quadrants c and d, a reversal in the curvature values is observed. When the ptosis grade 
increases, the relative area of the lower two quadrants becomes smaller, and larger curvature values 
are apparent in the region below the IMF. Typically, a large portion of the breast exhibits a convex 
shape, in other words positive curvature values are observed in the nipple-areola area, whereas below 
the IMF, the concave shape of the crease introduces negative curvature values. Thus over the inferior 
pole of the breast a smaller number of points with lower curvature values are observed. Figure 3 shows 
the curvature map of four left breasts from grade 0, 1, 2, and 3. 
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In order to evaluate the feasibility of Gaussian curvature as a feature for classification, we generated 
histograms to visualize the distribution of curvature values in each of the 4 quadrants. Since the 
curvature values are very small and greater than 95% of the values are located within the range�����
����� �������, we divided the range into 40 bins, with each bin holding a range of���������, except that 
the first bin and the last bin included Gaussian curvatures smaller than ������� and greater than���
����, respectively. In order to standardize the size of the breast, the total number of points in each bin 
was normalized with respect to the total number of points in the ROI. Histograms of four quadrants were 
generated and concatenated in the order of a, b, c, and d. Finally, a histogram template for every grade 
was generated by taking the average of the histograms for all breasts within the specific grade, as 
shown in Figure 4. 
 
Figure 4 shows the Gaussian curvature histogram templates for grade 0, 1, 2, and 3, respectively. 
Quadrant a, b, c, and d are represented in bins 1-40, 41-80, 8 -120, and 121-160, respectively as 
shown in Table 4.1. Compared with grade 0 and grade 1, it is clear that the number of points acquired 
around curvature value zero (bins 19-20 and 69-70) are larger, indicating a flatter area. For quadrants c 
and d, the higher ptosis grade includes more low curvature values because of the drooping of the 
breast. 
 
4.3 Projection Analysis 
Coronal projection analysis is the second method, which was evaluated in order to incorporate the 
effect of breast shape on ptosis grade. A coronal plane is a vertical plane that divides the breast into 
front and back sections. Coronal projection analysis includes the computation of the total number of 
points located on the surface mesh, between every two subsequent coronal planes, as shown is Figure 
5. 
 

  

  
Figure 4. Histogram templates of concatenated Gaussian curvature histograms including each of the four 

quadrants (a-d) for Grade 0, Grade 1, Grade 2 and Grade 3. 
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As mentioned before, each breast was divided into 4 quadrants 
according to the nipple position, and the same set of coronal 
planes were applied to all the 4 quadrants. We projected several 
coronal planes spaced at equal intervals to cut the breast into 
sections along the Z-axis. The depth of the breast was normalized 
along the Z-axis. The number of points located on the surface 
mesh on or between every two sequential planes were counted 
and normalized by the total number of points in the ROI. 
 
Because the point density for each subject is the same within each 
ROI, we reasoned that the distribution of points on the torso 
represents the morphology of the breast. A coronal plane 
projection plot for each of the four grades is shown in Figure 6 to 
illustrate the idea. Contours shown in Figure 6 display points 
located on coronal planes with an interval of 6 mm. It is important 
to note that nipple may or may not locate at the largest Z-value 

especially for highly ptotic breasts. For grade 0, which shows no ptosis, contours of superior and inferior 
parts, are circularly symmetric. As the ptosis grade increases, contours tend to be elliptical and non-
symmetric. 
 
Nine coronal planes cut the Z-axis into ten bins, with each bin representing a width of 0.1. Histograms 
for four quadrants were generated and concatenated in the order of a, b, c, and d. Histogram templates 
for each grade were generated by taking an average of all the breasts within each grade category. 
Figure 7 shows the coronal projection histogram templates of grade 0, 1, 2, and 3. Quadrant a is 
represented in bins 1-10, quadrant b is represented in bins 11-20, quadrant c is represented in bins 21-
30, and quadrant d is represented in bins 31–40. Within each quadrant, low bin numbers represent 
points closer to the chest, while higher bin numbers represent points closer to the nipple. As ptosis 
increases, the nipple position moves downwards and the total number of points acquired in quadrants a 
and b increases, while the total number of points in quadrants c and d decreases. 
 

  
(a) Grade 0 (b) Grade 1 

  
(c) Grade 2 (d) Grade 3 

Figure 6. Coronal projection plots for Grades 0, 1, 2, and 3. 

 

 
Figure 5: Coronal planes spaced at 
equal intervals placed depth-wise 

along the breast. 
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Figure 7: Histogram templates for coronal plane analysis for Grade 0, Grade 1, Grade 2 and Grade 3. Four 
quadrants are concatenated in the order: a, b, c, and d. 

 
4.4 Histogram Matching 
The similarity of the histogram template and the test case was computed by measuring the 
Bhattacharyya distance [64]. The Bhattacharyya measure can be used to compare the similarity 
between two histograms as follows. H and R represent two normalized histograms such that 

�� � �    (1) 
And 

�� � �    (2) 
 
If we let Hi be the histogram value in bin i and Ri, the histogram value in the same bin, the 
Bhattacharyya distance can be computed using the following equation 

                  � ��� � � �
�

����
�� � ���     (3) 

where  
� �

�

�
���                           (4) 

And N is the total number of bins in the histogram. 
 
Bhattacharyya distances are computed to fall within the range of [0, 1]. d(H, R)=0 or closer to 0 means a 
better match, whereas d(H, R) = 1 or closer to 1 indicates low similarity or a poor match. In order to 
compute the ptosis grade for a given test case, the Bhattacharyya distance between the test case’s 
histogram and each of the four template histograms is computed, the smallest distance is noted and the 
grade of the corresponding template is set to be the predicted ptosis grade. 
 
5. Experiments and Results 
Cross-validation is a validation technique typically used to estimate the performance of a predictive 
model. For each round of cross-validation, the data set is partitioned into two complementary subsets, a 
training set and a test set. The training set is used to develop the methodology, while the test set is 
used to validate the analysis. Usually multiple rounds of cross-validation are performed on different 
partitions of the data set and the validation result is averaged over rounds. In leave-one-out cross-
validation (LOOCV), as its name suggests, the data set is partitioned into two subsets: one sample data 
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in the test set and the remaining samples in the training set. It is repeated such that all samples are 
used once as a test set. 
 
We performed LOOCV on the 64 breasts, including 16 breasts for each grade. For each test, we picked 
one breast out of the data set as the test case, and the remaining 63 breasts formed the training set. 
Template histograms were generated for each grade by taking average of all the individual histograms 
for each breast image in the training data set. The cross-validation analysis was repeated 64 times so 
that each subject image in the data set was used once as the validation data. Clinical ptosis rating by a 
plastic surgeon was used as the ground truth. 
 
Each of the features, Gaussian curvature and coronal projection were tested individually and in 
combination. Our result shows that using Gaussian curvature and coronal projection independently has 
an average accuracy of 77% and 75%, respectively, and the combined use of the two features has an 
accuracy of 75% (Table 1). 

Table1. Averaged statistics for leave-one-out cross validation analysis. 

Statistic Curvature Coronal Projection Combined 
Sensitivity 0.5696 0.5054 0.5220 
Specificity 0.8483 0.8330 0.8319 
Accuracy 0.7734 0.7500 0.7500 

 
6. Conclusion 
Development of an objective and quantitative method for measuring ptosis from 3D images is an 
important yet challenging task. Prior work mainly focused on subjective rating, anthropometry or 2D 
photogrammetry. In this study, we proposed a new approach for measuring breast ptosis using 3D torso 
scans. We explored unique 3D morphological features from stereophotogrammetry that surpass the 
need of predefining the IMF. We investigated Gaussian curvature, coronal projection, and their 
combination as features and built histogram models for each experiment. The results demonstrate that 
our new approach on 3D images yields good performance. 
 
Future work in this study will include: 1) exploration of additional 3D features, 2) application of a multi-
feature discrimination statistical model for classification, and 3) automation of the assessment 
procedure, by incorporating computerized cropping and fiducial point detection to achieve robust and 
speedy prediction of breast ptosis. Automating the process of determining breast ptosis from 3D images 
should not only make the measurements of breast aesthetics more accurate and reliable, but also more 
practical for the busy medical profession. 
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