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Abstract 
3D face modeling is a very important and challenging task in computer vision especially in the 
presence of an expression variation. It plays an important role in a wide range of applications including 
facial animation, human-computer interaction and surgery. Current 3D face imaging solutions are often 
based on structured light camera/projector systems to overcome the relatively uniform appearance of 
skin. This paper proposes a space-time scheme for 3D face scanning, employing three calibrated 
cameras coupled with a non calibrated projector device. The proposed solution is a hybrid stereovision 
and phase-shifting approach, using two π-shifted sinusoid patterns and a texture image. It involves a 
pattern-based face localization approach and an online projector parameterization. The experimental 
results further validated the effectiveness of the proposed approach. 
 
Keywords: Stereovision, Phase-shifting, Object Localization, Projector parameterization, 3D 
scanning. 

1. Introduction 
3D face modeling is a very important and challenging task in computer vision especially in the 
presence of an expression variation. It plays an important role in a wide range of applications including 
facial animation, human-computer interaction and surgery [1]. Current 3D face imaging solutions are 
often based on structured light camera/projector systems to overcome the relatively uniform 
appearance of skin [2-4]. Depth information is recovered by decoding patterns of a projected 
structured light which include gray codes, sinusoidal fringes, etc. Current solutions mostly utilize more 
than three phase-shifted sinusoidal patterns to recover the depth information, thus impacting the 
acquisition delay; they further require projector-camera calibration whose accuracy is crucial for phase 
to depth estimation step; and finally, they also need an unwrapping stage which is sensitive to ambient 
light, especially when the number of patterns decreases [5]. An alternative to projector-camera 
systems consists of recovering depth information by stereovision using a multi-camera system as 
proposed in [4, 6]. Here, a stereo matching step finds correspondence between stereo images and the 
3D information is obtained by optical triangulation [4, 7]. Meanwhile, the model computed in this way 
generally is quite sparse. Recently, researchers looked into super-resolution techniques as a solution 
to upsample and denoise depth images. Kil et al. [8] applied super-resolution for laser triangulation 
scanners by regular resampling from aligned scan points with associated Gaussian location 
uncertainty. Super-resolution was especially proposed for time-of-flight cameras which have very low 
data quality and a very high random noise by solving an energy minimization problem [9]. 
 
This paper proposes a space-time scheme for 3D face scanning, employing three calibrated cameras 
coupled with a non calibrated projection device. The proposed solution is a hybrid stereovision and 
phase-shifting approach, using two π-shifted sinusoid patterns and a texture image. It involves a 
pattern-based face localization approach to decrease the whole processing time. This work suggests 
as well an online projector parameterization and does not require a camera-projector off-line 
calibration which constitutes a tedious and expensive task. In contrast to conventional structured-light 
methods, our method avoids the phase unwrapping stage thanks to the use of stereo in the first stage 
of the approach. Moreover, a temporal super-resolution is proposed to correct the 3D information, to 
complete the 3D scanned view and to consider the facial deformable aspect. Section (2) presents the 
system overview. Section (3) details the pattern-based face localization. In section (4), we high-light 
the online projector parameterization. Section (5) explains how the 3D space-time super-resolution is 
carried out. Section (6) discusses the experimental results and section (7) concludes the paper. 
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2. System Overview 
Figure 1 presents our 3D face scanning scheme. First, an offline strong stereo calibration computes 
the intrinsic and extrinsic parameters of the cameras, estimates the tangential and radial distortion 
parameters, and provides the epipolar geometry as proposed in [10]. In online process, two π-shifted 
sinusoid patterns and a third white pattern are projected onto the face. Three sets of left, middle and 
right images are captured, undistorted and rectified. The proposed model is defined by the system of 
equations (1) and allows the computation of both the sparse and dense models. It constitutes a variant 
of the mathematic model proposed in [5]. 
 

 
 

At time t, Ip(s,t), In(s,t), It (s,t) constitute the intensity value of the pixel s on respectively the positive 
image, the negative one and the texture one. Ib(s,t) represents the texture information and the lighting 
effect. ϕ(s,t) is the local phase defined at each pixel s. Solving (1), Ib(s,t) is computed as the average 
intensity of Ip(s,t) and In(s,t). Ia(s,t) is then computed from the third equation of the system (1) and ϕ(s,t) 
is estimated by equation (2). 
 

 
 
A 3D sparse model is estimated from stereo-matching with a fringe-based resolution and a sub-pixel 
precision [7]. Second, a precise projector parameterization is performed based on the computed 
sparse model. Thus, we avoid the camera-projector off-line calibration which constitutes a tedious and 
expensive task.  

 
Fig.1. 3D Sequence Acquisition Framework of a textured moving face 

 

Then, a dense 3D model is recovered by the intra-fringe phase estimation, from the two sinusoidal 
fringe images and a texture image, independently from the left, middle and right cameras. The left, 
middle and right 3D dense models are fused to produce the final 3D model which constitutes a spatial 
super-resolution. Moreover, a temporal super-resolution based on the CPD algorithm is proposed to 
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correct the 3D information, to complete the 3D scanned view and to consider the facial deformable 
aspect [4]. In contrast to conventional methods, our method avoids the phase unwrapping stage 
thanks to the use of stereo in the first stage of the approach. The experimental results further validated 
the effectiveness of the proposed approach. 

3. Pattern-based face localization 
When one sinusoidal pattern is projected on the face, a strong contrast occurs on the informative facial 
area and weak contrast characterizes the background of the scanned face. The idea is to benefit from 
the contrast variation to localize the region of interest and carry out a spectral analysis to localize the 
low frequencies on captured images. Figure 2.a presents a captured image and figure 2.c presents the 
face localization result. To localize the facial region, we compute FFT on a sliding window for each 
epiline which provides for each pixel a 2D curve of FFT frequency amplitudes. A 3D spectral 
distribution is obtained which highlights the facial region for the current epiline as shown in figure 2.b. 
We propose to keep only pixels belonging to this highlighted region. Thus, for each pixel in the epiline, 
we consider a weighted sum of only the low-frequency amplitudes and we apply an adequate 
thresholding to obtain the region-of-interest as illustrated by figure 2.d.  

 
Fig.2. Pattern-based face localization 

4. 3D sparse modeling for online projector parameterization  
When projecting vertical fringes, the video projector can be considered as vertical adjacent sources of 
light. Such a consideration provides for each epiline a light source point OPrj situated on the 
corresponding epipolar plane. Our projector parameterization is performed based on the computed 
sparse model generated through a stereovision scenario. The sparse model is formed by the primitives 
situated on the fringe change-over which is the intersection of the sinusoidal component of the positive 
image and the second π-shifted sinusoidal component of the negative one [6]. Therefore, the 
localization has a sub-pixel precision. Corresponding multi-camera primitives necessarily have the 
same Y-coordinate in the rectified images. Thus, stereo matching problem is resolved in each epiline 
separately using Dynamic Programming. The 3D sparse point cloud is then recovered by computing 
the intersection of optical rays coming from the pair of matched features.  
 
The sparse 3D point cloud is a serie of adjacent 3D vertical curves obtained by the fringes intersection 
of the positive and the negative images. Each curve describes the profile of a projected vertical fringe 
distorted on the 3D facial surface. We propose to estimate the 3D plane containing each distorted 3D 
curve separately. As a result, the light source vertical axis of the projector is defined as the intersection 
of all the computed 3D planes. This estimation can be performed either as an offline or online process 
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unlike conventional phase-shifting approaches where the projector is calibrated on offline and cannot 
change its position when scanning the object. 

5. Non-rigid depth super-resolution 
 
Here the objective is to densify the sparse model obtained from active stereo-vision. We assume that 
the vertical axis of the projection source is accurately estimated. Our approach consists in: first, to 
estimate separately for each camera the depth information of the intrafringes pixels from the observed 
phase information and second, to fuse them to achieve a more complete and precise model. 
Concerning the first step, the 3D coordinates of each pixel are computed using phase-shifting analysis. 
Conventional phase shifting techniques estimate the local phase in [0..2π] for each pixel on the 
captured image; the absolute phases are calculated by phase unwrapping of theses local phases, also 
defined as wrapped phases. Finally the depth information is recovered through a phase to depth 
conversion which is based on the geometry of the camera-projector pair as described in [11, 12]. In the 
proposed approach, the sparse model lets us retrieve 3D intra-fringe information from wrapped phases 
directly using an adequate phase-to-depth algorithm that we proposed in [14]. Conventional 
super-resolution techniques carry out a registration step between low-resolution data, a fusion step 
and a deblurring step. Here, the phase-shifting analysis provides aligned left, middle and right point 
clouds since their 3D coordinates are computed based on the same 3D sparse point cloud. Also, left, 
middle and right point clouds present homogeneous 3D data and need only to be merged to retrieve 
the high-resolution 3D point cloud. 
 
A 3D face model can present some artifacts caused by an expression variation, an occlusion or even a 
facial surface reflectance. To deal with these problems, we propose to apply a 3D temporal 
super-resolution for each couple of successive 3D point sets Mt−1 and Mt at each moment t. First, a 3D 
non-rigid registration is performed and formulated as a maximum-likelihood estimation problem since 
the deformation between two successive 3D faces is non rigid in general. We employ the CPD 
(Coherent Point Drift) algorithm proposed in [11] to registrate the 3D point set Mt−1 with the 3D point set 
Mt. The CPD algorithm considers the alignment of two point sets Msrc and Mdst as a probability density 
estimation problem and fits the GMM (Gaussian Mixture Model) centroids representing Msrc to the data 
points of Mdst by maximizing the likelihood as described in [11]. The core of the CPD method is forcing 
GMM centroids to move coherently as a group, which preserves the topological structure of the point 
sets. The coherence constraint is imposed by explicit reparameterization of GMM centroid locations for 
rigid and affine transformations. For smooth non-rigid transformations like expression variation, the 
algorithm imposes the coherence constraint by regularization of the displacement field [12]. 
 
We propose to test the efficiency of the CPD non-rigid algorithm especially if the point sets contain a 
high random noise and insert some ICP (Iterative Closest Point Algorithm) iterations to minimize false 
points and facilitate the convergence. Once registered, the 3D point sets Mt−1 and Mt and also their 
corresponding 2D texture images are used as a low resolution data to create a high resolution 3D point 
set and its corresponding texture. We apply the 2D super-resolution technique as proposed in [13]. 
The 3D model Mt cannot be represented by only one 2D disparity image since the points situated on 
the fringe change-over have sub-pixel precision. Also, the left, middle and right pixels participate 
separately in the 3D model since the 3D coordinates of each pixel are retrieved using only its phase 
information. Thus, we propose to create for each camera three 2D maps defined by the X, Y and Z 
coordinates of the 3D points. The optimization algorithm and the deblurring are applied for each 
camera separately to compute high-resolution images of X, Y, Z and texture from the low-resolution 
images. We obtain for each camera a high-resolution 3D point cloud using high-resolution data of X, Y 
and Z. The final high-resolution 3D point cloud is retrieved by merging the left, middle, and right 
obtained 3D models which are already registrated since all of them contain the 3D sparse point cloud. 

6. Experimental results 
The stereo system hardware is formed by three network cameras with 30 fps and a 480x640 pixel 
resolution and a LCD video projector with a 1024x768 pixel resolution. Scanning one 3D frame needs 
three successive images with a different projected pattern. For a moving face, the obtained three 
successive images present a slight expression variation able to create some artifacts or a depth 
imprecision. The cameras and the projector are not synchronized by a special hardware which leads to 
a bad pattern projection on the face. The projector vertical axis is defined by a directional 3D vector 
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projN  and a 3D point Pproj. projN and Pproj are computed by analyzing each 3D plane defined by all the 
3D points situated at the vertical profile of the same fringe change-over. The equations of the fringe 
planes are estimated by a mean square optimization method with a precision of 0.002mm. The 
directional vector projN is then computed as the normal vector to all the normal vectors of the fringe 

planes. projN is estimated with a deviation error of 0.003rad. Finally, the point Pproj is computed as the 
intersection of all the fringe planes using a mean square optimization.  
 
Figure 3 presents the primitives extracted and the reconstruction steps to create one facial 3D view 
with neutral expression from only two cameras. The precision of the reconstruction is estimated using 
a laser 3D face model scanned by a MINOLTA VI-300 non-contact 3D digitizer. We perform a 
point-to-surface variant of the 3D rigid matching algorithm ICP (Iterative Closest Point) between a 3D 
face model provided by our approach and a laser 3D model of the same face. The mean deviation 
obtained between them is 0.3146mm.  

 
Fig.3. Reconstruction steps to create one facial 3D view from only two cameras. 

 
The proposed approach needs a non-rigid matching step between the 3D frame Ft and its preceding 
3D frame Ft−1. The CPD performs an efficient matching in the presence of non-rigid deformations. 
Figure 4 shows the result of a CPD rigid matching between two successive 3D frames with an 
expression variation and the result of a CPD non-rigid matching between the same faces. It describes 
the spatial deviation after the matching process and illustrates the efficiency of the CPD non-rigid 
algorithm. The non-rigid matching provides a mean spatial deviation of 0.0387mm/pixel and a standard 
deviation of 0.0371mm/pixel. The rigid matching provides a mean spatial deviation of 0.0616mm/pixel 
and a standard deviation of 0.0566mm/pixel.  
 

 
 

Fig.4. CPD Rigid and non-rigid matching results 
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At time t, the left, middle and right cameras capture three different 2D views as shown in figure 5, each 
view is represented by a set of three images containing respectively the positive pattern, the π-shifted 
pattern and the white pattern. These 2D views provide two 3D facial views which can present some 
artifacts as shown in figure 6 especially for the left 3D view of the second 3D frame shown in 6.d. To 
deal with these errors, the first and second 3D frames are merged despite their non-rigid deformation 
thanks to the super-resolution approach proposed in section (5).  
 
 

 
Figure 5: Sampled primitives on left, middle and right views for two successive frames with an expression variation 

 

 
 

Figure 6: 3D space-time results. 
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As shown in figure 7, the non rigid matching algorithm CPD matches the preceding 3D frame with the 
current 3D left view with a mean deviation of 0.1222mm/pixel. When some ICP iterations are employed 
with the CPD non-matching iterations, an efficient matching result is obtained with a mean deviation of 
0.0437mm/pixel. Also, the hybrid (ICP+CPD) algorithm localizes and clears the artifacts which 
represent a high spatial deviation with the preceding 3D frame. 
 

 
Fig.7. Non-rigid matching results 

7. Conclusion and future work 
This paper proposes a multi-camera 3D acquisition solution with a 3D space-time super-resolution 
scheme which is particularly suited to 3D face scanning. It involves a pattern-based face localization 
approach to decrease the whole processing time. This work suggests as well an online projector 
parameterization and does not require a camera-projector off-line calibration which constitutes a 
tedious and expensive task. We develop an efficient non-rigid registration approach to deal with the 
facial deformable behavior especially in the presence of an expression variation. As a future work, we 
suggest considering more 3D frames through the time axis. Also, hardware synchronization between 
the cameras and the projector will be performed to get an efficient and real-time 3D video scanning 
result. 
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