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Abstract 
A method to automatically select landmarks in 3-D range scans is proposed. Selected landmarks 
represent locally unique intrinsic properties of a scanned surface. The selection process requires no 
user interaction or surface assumptions. It uses the principal curvatures at the range points to select 
the landmarks. First, a large number of landmarks are generated by fitting a bicubic polynomial surface 
to points surrounding each range point and calculating the principal curvatures at the range point. 
Points of locally extremum principal curvature are then considered candidate landmarks. Candidate 
landmarks that match with landmarks in other scans of the same subject are then selected as the final, 
stable landmarks.  
 
Our main goal in landmark selection is to provide a means to characterize models in a range data base. 
With several scans of each subject available in the data base, a number of stable landmarks are 
determined for each subject. The locations and characteristics of the landmarks are used to describe a 
subject and distinguish it from other subjects. The main contribution of this work is considered to be the 
selection of unique and stable landmarks in a range scan and generation of a descriptor for each 
landmark that characterizes the intrinsic properties of the surface in the neighborhood of the landmark. 
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1. Introduction 
This research develops an automatic method for locating and identifying landmarks in range scans. 
The identified landmarks are intrinsic to the model subject and are locally unique. The selection 
process requires no user interaction. This is an important capability providing the means to organize, 
search, and compare 3-D scanned models. This research offers an efficient means of finding intrinsic 
landmarks in a range scan by using principal curvature values at range points. 
 
Often, many scans of the same subject are available and there is a need to identify the subject by 
matching it with known models. Previous studies in automatic landmark detection have used 
pre-specified locations for detection. This research uses unique and invariant feature characteristics to 
identify landmarks that characterize the underlying model. The proposed method removes the 
requirement of having landmarks at fixed locations and allows the method to be applicable to any 
range scan. Landmarks are selected autonomously by the system from among key feature points that 
are identified across multiple models of the same object. 
 
The objective of this research is to evaluate the effectiveness of intrinsic landmarks in characterizing 
models. As a novel approach to model characterization, the utility of intrinsic landmarks is unknown. By 
developing a method to select intrinsic landmarks and an evaluation technique to determine the validity 
of the selection, these concerns can be addressed. The objectives of this research are: 
 
1. Given a set of range scans of a subject, select the same landmarks in each scan of the subject. 
2. Given a set of range scans of a subject, select a number of stable landmarks specific to the subject 

and select those same landmarks in future scans of the same subject. 
3. Given a set of models, with a set of stable landmarks in each, identify new scans of those models. 
4. Given a set of models, with a set of stable landmarks and known characteristics (i.e. gender, body 

mass index - BMI) in each, predict those characteristics in scans of new models with unknown 
characteristics. 
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Goals 1 and 2 are the problems addressed in this paper. The other goals are applications of the 
described research.  

2. Literature Review 

Landmark identification in range scans has been the subject of many research programs. Over the 
past few decades, scanning technology has sufficiently progressed and the availability of high quality 
range scans has improved. As the quality and availability of range data has increased, so has interest 
in analyzing and utilizing it. However, this is still a relatively new technology and a fully robust method 
for identifying landmarks has yet to be developed. 
 
In 1999 the CAESAR (Civilian American and European Surface Anthropometry Resource) project was 
presented by Robinette et al. [1]. She presented an early overview of the U.S. Air Force Research 
Laboratory’s CAESAR project between 1998 and 2001. Pre-specified landmarks were marked on the 
human body with physical markers, “flat” white discs when possible and 3-D boxes when the discs 
would not be visible. There was not a fully automated landmark detection program robust and proven 
enough to be used; consequently, manual landmark detection was planned. The original plan for 
detecting landmarks was presented later by Burnsides et al. [2]. Initial efforts showed that manual 
selection could take up to 60 minutes per scan per subject. With several thousand subjects, the time 
required to mark the entire data set made a complete implementation unfeasible. This was not only 
because of the considerable time constraint, but also because of errors introduced when human 
fatigue sets in after hours of landmark identification. An autonomous system was necessary to fully 
detect landmarks for thousands of scans. 
 
A method to study range scans was presented by Wang et al [3,4]. This method parameterized range 
data to represent models. Recognizing the difficulty in processing large data sets, the authors devised 
a 3-step process to generate features of a model. First, a range data set was prepared, then a human 
model was constructed, and finally, features of the model were extracted. The first step involved noise 
filtering and model orientation. In order to build the features, a model was first segmented into six parts, 
the head root, left and right arms, major body, and left and right legs. Each of these segments was 
cylindrical and was analyzed slice by slice. This resulted in six fully covered segments. Finally, features 
were extracted based on fuzzy logic using descriptors such as: the chest being about ¾ of the height 
from side view. The descriptors were based on garment industry standards and were used to extract 
dimensions to characterize the segments. The method was efficient and preserved topology; however, 
in some cases the fuzzy rules selected incorrect body parts. Once the features were parameterized, 
new models were created without new scans by adjusting the parameters in the existing models. 
 
An approach developed by Leong et al [5] used geometric properties and common proportions to 
describe a model. This approach did not use markers and identified 21 feature points and 35 feature 
lines based on geometric properties and common proportions of the human body. Similar to the 
previous method, a model was segmented into five major parts: arms, legs, and torso-and-head. A 
range scan was encoded into a 2-D depth map to minimize data size and improve computational 
speed. The angle and height were used as image coordinates in a 16-bit gray intensity. Laplace and 
Sobel masks were used to detect features, filtering noise and determining curve properties. The 
method was successful in detecting feature points and lines in the torso-and-head segment of 5 
“standard” size female models. 
 
An additional project reviewed for this study was the work of Ben Azouz et al. [6,7] at the National 
Research Council of Canada. This research analyzed the CAESAR database mentioned previously. 
The method required several steps; first step was data processing, which incorporated the following: 
the surface was smoothed using a Taubin filter, reoriented and segmented to remove the hands and 
feet, and partitioned into slices. The obtained model was placed in a cube of voxels, each of which was 
classified as either interior or exterior. The model was then converted to a vector with deviation vectors 
representing the difference in distances from the average model. Eigenvectors of the matrix 
representing these deviation vectors were used to define the model; with the first 40 eigenvectors 
spanning 92% of the variability. Each principal component was highly correlated to a body shape 
description. 
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This research was later expanded by Ben Azouz et al. [8,9]. Using the volumetric representation and 
the eigenvectors, it was demonstrated that model variation could be created by altering the principal 
components. Furthermore, a landmark detection method was implemented by inferencing over a 
pair-wise Markov random field. SPIN images [10] were used to characterize local surface features 
which were then matched to a best fit in the Markov random field. 200 models were used to learn an 
initial loop belief. 30 additional models were used to validate the method, obtaining encouraging 
results. 

3. Proposed Approach 

With the increasing availability of range scans of the human body, it is critical to develop a method for 
sorting and comparing the scans. Existing methods have limitations. The methodology presented here 
identifies unique landmarks in the scans. Landmark selection is achieved by analyzing every range 
point and calculating its principal curvatures and directions, and determining the average curvature of 
points surrounding each landmark.  Feature points are selected based on the local strength of these 
features. As new scans of the same subject become available, the same intrinsic landmarks are 
identified in them. 

3.1. Intrinsic Landmarks 

Landmarks are invariant feature points on a model. Given multiple scans of various objects of the 
same type (i.e. – humans, cars, cows, etc.), each object can be recognized by a set of unique 
landmarks. These landmarks characterize the local geometry of the surface of the object. The 
landmarks can define an object by their number, locations, and characteristics. 

3.2. Landmark Characterization 

The identification and characterization of landmarks in a range scan is a non-trivial task. It is possible 
to visually locate landmarks on a model based on pre-specified characteristics. However, when there 
are numerous landmarks to find and there are thousands of models, the problem becomes intractable, 
due to time and accuracy constraints. It is also possible to pre-mark desired landmarks on a subject 
prior to scanning. However, this is also time-consuming and is prone to user bias. These limitations 
can be overcome by designing a method that can automatically select landmarks on range data that 
are intrinsic to the model. 
 
In order to automatically select landmarks, it is necessary to establish a consistent method of 
characterization. The proposed method examines each range point and considers its surrounding 
region. The critical values considered are the maximum and minimum principal curvatures. Given a 
three dimensional surface, at any point, there are two orthogonal principal curvature directions. The 
maximum and minimum curvature directions indicate the direction of the greatest and least curvature, 
respectively. Both directions lie on a plane tangent to the surface at the point and are, therefore, 
orthogonal to the surface normal. The magnitude of the curvature value represents how curved the 
patch is along that curvature direction. Consider the patch shown in Figure 1. The middle image 
displays the patch as seen down the direction of minimum curvature; the direction of maximum 
curvature can be seen originating at the center of the image and continuing off to the left. Likewise, the 
image to the right shows the patch as seen down the direction of maximum curvature; the direction of 
minimum curvature can be seen originating at the center of the image continuing off to the right. It is 
important to note that the principal curvature directions represent the direction of maximum and 
minimum curvature at that point on the surface; they are not curvature contour lines which represent 
continuous curves of maximum or minimum curvature along the patch. 
 

  
Fig.1. Left, the patch is shown from an arbitrary view angle.  Middle, the patch is shown from a view down the 

direction of minimum curvature. Right, the patch is shown from a view down the direction of maximum curvature. 
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Once the principal curvatures and directions for every point are calculated, each point can be 
characterized based on their own curvatures, as well as the curvatures of the points surrounding it. 
The neighborhood of points is characterized by the surface normal and principal curvature directions, 
which are aligned with the surface normal along the z-axis, the direction of maximum curvature along 
the x-axis and the direction of minimum curvature along the y-axis. This allows the characterization to 
be invariant to model orientation. Regardless of the orientation of the point on the model, the direction 
of maximum curvature will be consistent. The points in a neighborhood are grouped into one of 16 bins, 
which subdivide the region immediately surrounding the current point into equal size regions. With this 
arrangement, each point is characterized based on 34 values, which include its own maximum and 
minimum principal curvature values as well as the average maximum and minimum principal curvature 
values of the points for each of the 16 bins. This characterization describes not only the attributes of 
the point itself, but that of the region surrounding it as well. In this way, landmarks are distinctively 
described. 

3.3. Characterizing a Landmark and its Neighborhood 

To characterize a landmark, principal curvatures are calculated from an explicit function defining the 
surface surrounding the landmark. However model data is not stored as a smooth surface. In fact, the 
scanners generally generate a point cloud that represents the surface of the subject. A computer 
program generates polygons (usually triangles) to connect the points and approximate a range scan to 
a model by a polygon mesh. The point and polygon representation of a subject is an efficient method 
for data storage and provides an approximation to the model for most uses. Certainly, a single explicit 
function cannot be used to accurately define the shape of the subject. Nevertheless, an explicit 
function is necessary and can instead be calculated locally for each point. By examining all the 
connected points within a specified distance of the current point, a surface can be fitted to them to 
define and explicit surface. This surface will accurately represent the smooth shape surrounding the 
point and provide accurate principal curvature data for landmark characterization. Figure 2 displays the 
fitting of a surface to a landmark and range points in its neighborhood. 
 

  

 

Fig 2. A local neighborhood, clockwise from the top left: the points, the points after triangulation, the surface and the 
triangular mesh, and finally, the points and the fitted surface. 

4. Implementation 

With an established landmark characterization method, a methodology is implemented to automatically 
select landmarks in a data set consisting of points and a triangle mesh. Incorporating an acceptable 
set of practical assumptions and constraints, a range scan is preprocessed prior to automatic landmark 
selection. The implemented methodology consists the following steps: 
 
1. Identifying the neighborhood of the point currently under consideration. 
2. Fitting a bi-cubic surface to the neighborhood. 
3. Characterizing the point based on 34 total principal curvature values, including the maximum and 

minimum principal curvature of the landmark and its 16 surrounding regions. 
4. Selecting feature points based on the local strength of each point’s principal curvature values. 
5. Identifying intrinsic landmarks based on a random sample and consensus (RANSAC) algorithm 

that matches feature points within the subject’s scans. 
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4.1. Neighborhood Establishment 

The first step of the landmark selection process is to select the neighborhood of a point. Using the 
mesh data, it is possible to select only connected points within a given radius, avoiding those points 
that are close but not connected to the point under consideration within the specified radius. 
 
After selecting the neighborhood, the points within the neighborhood are translated so that the current 
point moves to the origin. Because the principal curvature values are based only on local shape, the 
neighborhood can be examined in isolation from the rest of the model. This removes the impact of a 
model’s position and orientation. The neighborhood is oriented such that the surface normal is along 
the z-axis, placing the principal curvature directions in the x-y plane. This is accomplished by 
approximating the surface normal by fitting a plane through the current point and minimizing the 
distance of each point in the neighborhood to the plane using a linear least squares algorithm. The 
plane normal is used to approximate the surface normal and the entire neighborhood is rotated so that 
the plane normal is along the z-axis. 

4.2. Surface Fitting 

After the neighborhood has been properly oriented, an explicit function is fitted to the points. The 
explicit function is defined by the following bi-cubic polynomial: 
,ݔ)݂  (ݕ =෍෍ܽ௜௝ݔ௜ଷ

௝ୀ଴ ௝ଷݕ
௜ୀ଴ . (1) 

 
The coefficients of the polynomial are determined using a weighted least squares algorithm to 
minimize the weighted sum or square distances between the calculated f(x, y) and the z values of 
points in the neighborhood, with the points closer to the origin given a greater weight. Given this 
definition of the surface, the actual surface normal direction can be computed. The neighborhood and 
surface are rotated such that the true surface normal is along the z-axis. 
 
With the explicit function defining the surface locally, the principal curvatures and directions are 
determined directly as follows [10]. These equations are based on the first and second fundamental 
forms of a surface. The forms require a parameterization of the surface. Using the following 
parameterization:  

p(ݓ,ݑ) = ሾݑ, ,ݓ ,ݑ)݂  ሿ,                                (2)(ݓ
 
where, u corresponds to x and w to y. The first form is given by, 
 ݀p·݀p = ଶݑ݀ܧ + ݓ݀ݑ݀ܨ2 +  .                           (3)	ଶݓ݀ܩ
 
The coefficients are calculated as follows: ܧ = ௨࢖ ∙ ܨ ,                                   (4)	௨࢖ = ௨࢖ ∙ ܩ ,                                   (5)	௪࢖ = ௪࢖ ∙  .                                   (6)	௪࢖
Likewise, the second form is given by, 
 −݀p(ݑ, (ݓ ∙ ݀n(ݑ, (ݓ = ଶݑ݀ܮ + ݓ݀ݑ݀ܯ2 +  ଶ .                 (7)ݓ݀ܰ
 
The coefficients are calculated as follows: ܮ = ௨௨࢖ ∙ ܯ (8)                                   ,ܖ = ௨௪࢖ ∙ ܰ (9)                                   ,ܖ = ௪௪࢖ ∙  (10)                                  .	ܖ
 
With these coefficients, the principal curvatures can be calculated by solving the following equation: 
ܩܧ)  − ଶߵ(ଶܨ − ܰܧ) + ܮܩ − ߵ(ܯܨ2 + ܰܮ) (ଶܯ− = 0 .                (11) 
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The roots of this equation are the principal curvature values. The principal directions can be found, by 
considering: ℎ =  (12)                                  , ݑ݀/ݓ݀
 
and solving the following quadratic equation:  
ܰܨ)  − ℎଶ(ܯܩ + ܰܧ) − ℎ(ܮܩ + ܯܧ) − (ܮܨ = 0 .                       (13) 
 
Here, roots, h1 and h2 represent the ratio in the dw/du (or y/x) plane between the curvature directions. 
So, the curvature directions are:  	ܿݎ݅ܦݒݎݑଵ = ሾℎଵ, 1, 0ሿ	,	                               (14) ܿݎ݅ܦݒݎݑଶ = ሾℎଶ, 1, 0ሿ	.                              (15) 
 
After determining the principal curvature directions, the neighborhood must be reoriented so that the 
maximum curvature direction is on the x-axis and the minimum curvature direction is on the y-axis. By 
aligning the principal curvature directions to the x and y axes, the shape (based on curvature values) of 
the region surrounding the point can be consistently compared to the shape of other points. Since the 
neighborhood is examined in isolation from the model, this alignment assures that there is uniformity in 
the orientation of neighborhoods under consideration. The principal curvature directions found are not 
explicitly associated with the maximum or minimum direction. The proper association is determined by 
checking every point in the neighborhood to find a point closest to the positive and negative axis of 
each curvature direction. Based on the average slope of change for the z value of the two points on 
each axis, the maximum curvature direction is selected as the axis with the largest z slope, 
representing the greatest curve.  
 
Finally, each point in the neighborhood is associated with one of the bins subdividing the region. The 
neighborhood is divided around the current point (at the origin) into 16 equal size, square bins, via a 
4x4 grid in the x/y plane. 

4.3. Feature Point Selection 

Feature points are selected by examining each point. The maximum principle curvature value of that 
point is checked against the maximum principle curvature values of its neighbors. The examined point 
is marked as a local maximum, local minimum, or neither for the maximum principle curvature. 
Likewise, the examined point is labeled based on its minimum principle curvature value. Finally, the 
examined point is considered to be a feature point if its maximum principle curvature value is locally 
maximum and its minimum principle curvature value is a either locally maximum or minimum.  

4.4. Point Characterization 

After calculating the principal curvature values and surface normal direction for every point in the 
model, each point can be fully characterized. For each of the sixteen bins surrounding the point, the 
average maximum and minimum principal curvature values are calculated within each bin and stored 
in an array. Each point is characterized by this array, along with its own maximum and minimum 
principal curvature values. The process efficiently describes the local model shape around the point. 

4.5. Intrinsic Landmark Selection 

The selection of the intrinsic landmarks is accomplished by examining several models of the same 
subject. For each model, feature points are generated independently. A RANSAC [12] method is 
utilized to define the transformation between any two of the models, using the matching feature points. 
First, a set of four feature points are selected from one of the models. Four points are the required to 
determine the 12 unknown coefficients of the affine transformation defined by: 
 ௜ܺ = ௜ݔܽ + ௜ݕܾ + ௜ݖܿ + ݀                               (16) ௜ܻ = ௜ݔ݁ + ௜ݕ݂ + ௜ݖ݃ + ℎ                               (17) ܼ௜ = ௜ݔ݆ + ௜ݕ݇ + ௜ݖ݈ + ݉                               (18) 
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These selected points, with their coordinates:	(ݔ௜, ,௜ݕ	  ௜), are matched to feature points in anotherݖ	
model, with coordinates: ( ௜ܺ, 	 ௜ܻ , 	ܼ௜). This match is made based on the similarity of the 34 curvature 
characteristics of the two points. Next, the coefficients of the affine transformation are calculated 
mapping the coordinates of the second model to that of the first by linear least squares. Using these 
equations, the remaining, unmatched feature points of the second model are transformed to the 
coordinate system of the first. Then, for each transformed feature point, a check is made to determine 
whether there is a feature point within its distance ε. When that is the case, the points are considered 
matching. If at least 85% of the feature points match, then the RANSAC is considered complete. 
However, if there isn’t enough matching feature points, the previous steps are repeated, with a new set 
of 4 points. This is continued until at least 85% of the feature points match. 
 
After establishing correspondence between feature points in two models, intrinsic landmarks are 
selected from the feature points. That involves finding feature points that have matches across all the 
models of the subject. This process identifies stable feature points that appear in all models. 

5. Results 
The proposed method, as implemented, is generally capable of selecting intrinsic landmarks from point 
cloud and triangular mesh data sets containing multiple scans of a subject. In order to evaluate the 
effectiveness of the method, a data set generated from the Air Force Research Laboratory is used. 
This data set consists of twenty subjects, male and female, in three poses, each pose scanned three 
times in two different scanners. For this initial evaluation, each of the six scans from one pose, for all 
twenty subjects is considered. 

Table 1. Landmark selection results showing average deviation from mean of landmarks,  
after affine matching. 

Model 
Average Deviation 
from Mean (mm) 

Standard Deviation of 
Deviation from Mean 

(mm) 
1 7.80754 0.01463 

2 7.48236 0.01436 

3 7.70167 0.01408 

4 7.56837 0.01372 

5 7.55513 0.01355 

6 7.66257 0.01408 

7 7.70397 0.01492 

8 7.50887 0.01435 

9 7.74309 0.01415 

10 8.04403 0.01444 

11 7.52169 0.01371 

12 7.63578 0.01406 

13 7.56136 0.01421 

14 7.38253 0.01361 

15 7.83911 0.01478 

16 7.69913 0.01357 

17 7.54301 0.01353 

18 7.64389 0.01446 

19 7.44141 0.01394 

20 7.59805 0.01402 

Average 7.63218 0.01411 

2nd International Conference on 3D Body Scanning Technologies, Lugano, Switzerland, 25-26 October 2011

101



 

 

Intrinsic landmarks were selected for twenty subjects based on the feature points generated in the six 
scans from the same pose using the following RANSAC criteria: start with 4 matching points, use 
matching tolerance, ε, of 3.5 mm, and stop RANSAC when 85% of points match. The results are given 
in Table 1. This table shows how closely the matched landmarks are clustered when transformed to 
the coordinate system of one model. The mean deviation for each model represents the average 
distances calculated for each selected landmark in that model. This distance is measured by 
calculating the centeroid of the six matched landmarks, then averaging the Euclidian distance between 
the centeroid and each matched landmark. So, for Model 1, the mean deviation of each matched 
landmark from its cluster centeroid is 7.80 mm, with a standard deviation of 0.01 mm. Overall, the 
mean deviation of matched landmarks from cluster centeroids was less than 8 mm, with a standard 
deviation of 0.01 mm. A set of selected landmarks can be seen in Figure 3, which displays landmarks 
selected in six scans of one subject. 

 

 

 

Fig.3. Automatically selected intrinsic landmarks of a subject, where the black dots mark selected landmarks, found 
in all six scans. The white dots are clothing industry standard landmarks, physically marked on the subjects prior to 

scanning. 

6. Future Work 

The core method has been implemented with encouraging results; this completes Goals 1 and 2, 
which were to select landmarks across all scans of a subject and identify the stable landmarks in 
additional scans. The significant step in the research is to address Goal 3, the identification of new 
scans of known subjects and Goal 4, which is to predict characteristics of unknown subjects. 

7. Summary and Conclusions 

A method for selecting intrinsic landmarks was introduced demonstrating encouraging results. 
Currently, the method can select these landmarks within mean deviation of about 8 mm. This is a 
useful capability that can be used to characterize and match any 3-D model set that is stored as a 
triangular mesh. The proposed method does not require any subject markings, specified landmark 
definitions, or user input; it is a fully autonomous system. Future work will demonstrate its ability in 
model identification and matching. 
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